

CEA AND TECHNOLOGICAL INNOVATION FOR DEFENSE

- [Jean-Philippe BOURGOIN, Deputy Director of Technological Research](#)

Jean-Philippe BOURGOIN, representing the French Alternative Energies and Atomic Energy Commission (CEA), presented the role of his institution in **technological innovation for defence**. He recalled that the **CEA**, founded 80 years ago under the leadership of **General de Gaulle**, was built on a strong **scientific heritage**, based on **three fundamental pillars: excellence in research, the mobilization of significant resources for ambitious projects, and a clear objective of technology transfer to industry**.

With 21,000 employees, an annual budget of €6 billion, 700 industrial partnerships, and 250 start-ups created since 1972, the **CEA** is a key player in innovation in France. It is the world's leading research organization in innovation and houses the second-largest cybersecurity certification laboratory. Its activities are structured around several strategic directions, notably the **Military Applications Division**, which is responsible for **nuclear deterrence**, and the **Technological Research Division**, focused on **digital and energy innovations**. Over the past year, the **CEA** has also incorporated two program agencies, one dedicated to decarbonized energy and the other to components, systems, and digital infrastructures.

Technological Innovation for Defence

The **CEA** plays a vital role in **transforming scientific innovations into operational technologies**, particularly at **intermediate levels of technological readiness (TRL)**. It adopts an **approach based on the development of generic technologies** that can be applied to various **industrial sectors, including defence**.

Several major advancements were highlighted, including:

- **Infrared sensors**, developed with **LYNRED** ;
- **Image recognition systems**, in partnership with **THALES** ;
- **OLED micro-displays**, designed for advanced vision systems ;
- **Secure communication networks**, developed with **SAFRAN** ;
- **NRBC (Nuclear, Radiological, Biological, and Chemical) solutions**, presented at the **CEA's** stand during the symposium.

Mr. BOURGOIN emphasized the importance of dual-use technology, noting that civilian technological advancements are increasingly adapted to military needs. Artificial intelligence is a concrete example, with rapid developments such as the rise of generative AI, which requires strategic adaptation to address sovereignty and operational effectiveness challenges.

Strengthened Collaboration with the 27th Mountain Infantry Brigade

The **CEA** maintains a **structural partnership** with the **27th Mountain Infantry Brigade (BIM)**, initiated under the leadership of **General GIVRE** and continued by his successors. This cooperation aims to **test and adapt technological innovations** to the **operational realities of mountain combat**.

The joint work focuses on several priority areas:

- Improving the energy and material autonomy of deployed units ;
- Experimenting with technologies suited to hostile environments, particularly at high altitudes and under extreme climatic conditions ;
- Assessing stress levels in operations, using biometric sensors and artificial intelligence models;
- Developing head-up display systems, optimised for airborne forces ;
- Designing low-emissivity thermal tents.

Emerging Technologies and Operations in Extreme Conditions

The presentation also highlighted **solutions developed by the CEA** to enhance the operational capability of forces in challenging environments. Key innovations include:

- Robust and resilient communication networks, notably the **NEON** system, designed to operate in extreme conditions;
- Specialized reconnaissance drones, equipped with sensors capable of detecting avalanche victims;
- Multimodal data fusion tools, intended for crisis situation monitoring;
- Advanced artificial intelligence models, capable of identifying unknown objects with minimal learning;
- GPS-independent navigation systems, specially designed for areas lacking structured reference points;
- Alternative energy sources, such as hydrogen fuel cells for drones and high-efficiency solar panels, tested under extreme conditions.

• Technology Adapted to Operational Realities

Mr. BOURGOIN stressed an essential point: **technology must serve the armed forces as a tool, not an additional constraint**. He highlighted that **the best way to achieve this goal is through close collaboration with operational units**, ensuring that innovations align with battlefield requirements.

In a world where **technological advancements are progressing exponentially**, the CEA is committed to **supporting the armed forces by developing ever more adaptable, innovative, and resilient solutions**.

Finally, he **thanked all participants** for their attention and reaffirmed the **CEA's and its teams' availability to further explore these topics and continue discussions on innovation for defence**.

